/* ** This implementation of SHA1 is adapted from the example implementation ** contained in RFC-3174. */ #include #include #include "config.h" #include "sha1.h" /* * If you do not have the ISO standard stdint.h header file, then you * must typdef the following: * name meaning * uint32_t unsigned 32 bit integer * uint8_t unsigned 8 bit integer (i.e., unsigned char) * */ #define SHA1HashSize 20 #define shaSuccess 0 #define shaInputTooLong 1 #define shaStateError 2 /* * This structure will hold context information for the SHA-1 * hashing operation */ typedef struct SHA1Context SHA1Context; struct SHA1Context { uint32_t Intermediate_Hash[SHA1HashSize/4]; /* Message Digest */ uint32_t Length_Low; /* Message length in bits */ uint32_t Length_High; /* Message length in bits */ int Message_Block_Index; /* Index into message block array */ uint8_t Message_Block[64]; /* 512-bit message blocks */ int Computed; /* Is the digest computed? */ int Corrupted; /* Is the message digest corrupted? */ }; /* * sha1.c * * Description: * This file implements the Secure Hashing Algorithm 1 as * defined in FIPS PUB 180-1 published April 17, 1995. * * The SHA-1, produces a 160-bit message digest for a given * data stream. It should take about 2**n steps to find a * message with the same digest as a given message and * 2**(n/2) to find any two messages with the same digest, * when n is the digest size in bits. Therefore, this * algorithm can serve as a means of providing a * "fingerprint" for a message. * * Portability Issues: * SHA-1 is defined in terms of 32-bit "words". This code * uses (included via "sha1.h" to define 32 and 8 * bit unsigned integer types. If your C compiler does not * support 32 bit unsigned integers, this code is not * appropriate. * * Caveats: * SHA-1 is designed to work with messages less than 2^64 bits * long. Although SHA-1 allows a message digest to be generated * for messages of any number of bits less than 2^64, this * implementation only works with messages with a length that is * a multiple of the size of an 8-bit character. * */ /* * Define the SHA1 circular left shift macro */ #define SHA1CircularShift(bits,word) \ (((word) << (bits)) | ((word) >> (32-(bits)))) /* Local Function Prototyptes */ static void SHA1PadMessage(SHA1Context *); static void SHA1ProcessMessageBlock(SHA1Context *); /* * SHA1Reset * * Description: * This function will initialize the SHA1Context in preparation * for computing a new SHA1 message digest. * * Parameters: * context: [in/out] * The context to reset. * * Returns: * sha Error Code. * */ static int SHA1Reset(SHA1Context *context) { context->Length_Low = 0; context->Length_High = 0; context->Message_Block_Index = 0; context->Intermediate_Hash[0] = 0x67452301; context->Intermediate_Hash[1] = 0xEFCDAB89; context->Intermediate_Hash[2] = 0x98BADCFE; context->Intermediate_Hash[3] = 0x10325476; context->Intermediate_Hash[4] = 0xC3D2E1F0; context->Computed = 0; context->Corrupted = 0; return shaSuccess; } /* * SHA1Result * * Description: * This function will return the 160-bit message digest into the * Message_Digest array provided by the caller. * NOTE: The first octet of hash is stored in the 0th element, * the last octet of hash in the 19th element. * * Parameters: * context: [in/out] * The context to use to calculate the SHA-1 hash. * Message_Digest: [out] * Where the digest is returned. * * Returns: * sha Error Code. * */ static int SHA1Result( SHA1Context *context, uint8_t Message_Digest[SHA1HashSize]) { int i; if (context->Corrupted) { return context->Corrupted; } if (!context->Computed) { SHA1PadMessage(context); for(i=0; i<64; ++i) { /* message may be sensitive, clear it out */ context->Message_Block[i] = 0; } context->Length_Low = 0; /* and clear length */ context->Length_High = 0; context->Computed = 1; } for(i = 0; i < SHA1HashSize; ++i) { Message_Digest[i] = context->Intermediate_Hash[i>>2] >> 8 * ( 3 - ( i & 0x03 ) ); } return shaSuccess; } /* * SHA1Input * * Description: * This function accepts an array of octets as the next portion * of the message. * * Parameters: * context: [in/out] * The SHA context to update * message_array: [in] * An array of characters representing the next portion of * the message. * length: [in] * The length of the message in message_array * * Returns: * sha Error Code. * */ static int SHA1Input( SHA1Context *context, const uint8_t *message_array, unsigned length) { if (!length) { return shaSuccess; } if (context->Computed) { context->Corrupted = shaStateError; return shaStateError; } if (context->Corrupted) { return context->Corrupted; } while(length-- && !context->Corrupted) { context->Message_Block[context->Message_Block_Index++] = (*message_array & 0xFF); context->Length_Low += 8; if (context->Length_Low == 0) { context->Length_High++; if (context->Length_High == 0) { /* Message is too long */ context->Corrupted = 1; } } if (context->Message_Block_Index == 64) { SHA1ProcessMessageBlock(context); } message_array++; } return shaSuccess; } /* * SHA1ProcessMessageBlock * * Description: * This function will process the next 512 bits of the message * stored in the Message_Block array. * * Parameters: * None. * * Returns: * Nothing. * * Comments: * Many of the variable names in this code, especially the * single character names, were used because those were the * names used in the publication. * * */ static void SHA1ProcessMessageBlock(SHA1Context *context) { const uint32_t K[] = { /* Constants defined in SHA-1 */ 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6 }; int t; /* Loop counter */ uint32_t temp; /* Temporary word value */ uint32_t W[80]; /* Word sequence */ uint32_t A, B, C, D, E; /* Word buffers */ /* * Initialize the first 16 words in the array W */ for(t = 0; t < 16; t++) { W[t] = context->Message_Block[t * 4] << 24; W[t] |= context->Message_Block[t * 4 + 1] << 16; W[t] |= context->Message_Block[t * 4 + 2] << 8; W[t] |= context->Message_Block[t * 4 + 3]; } for(t = 16; t < 80; t++) { W[t] = SHA1CircularShift(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]); } A = context->Intermediate_Hash[0]; B = context->Intermediate_Hash[1]; C = context->Intermediate_Hash[2]; D = context->Intermediate_Hash[3]; E = context->Intermediate_Hash[4]; for(t = 0; t < 20; t++) { temp = SHA1CircularShift(5,A) + ((B & C) | ((~B) & D)) + E + W[t] + K[0]; E = D; D = C; C = SHA1CircularShift(30,B); B = A; A = temp; } for(t = 20; t < 40; t++) { temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[1]; E = D; D = C; C = SHA1CircularShift(30,B); B = A; A = temp; } for(t = 40; t < 60; t++) { temp = SHA1CircularShift(5,A) + ((B & C) | (B & D) | (C & D)) + E + W[t] + K[2]; E = D; D = C; C = SHA1CircularShift(30,B); B = A; A = temp; } for(t = 60; t < 80; t++) { temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[3]; E = D; D = C; C = SHA1CircularShift(30,B); B = A; A = temp; } context->Intermediate_Hash[0] += A; context->Intermediate_Hash[1] += B; context->Intermediate_Hash[2] += C; context->Intermediate_Hash[3] += D; context->Intermediate_Hash[4] += E; context->Message_Block_Index = 0; } /* * SHA1PadMessage * * Description: * According to the standard, the message must be padded to an even * 512 bits. The first padding bit must be a '1'. The last 64 * bits represent the length of the original message. All bits in * between should be 0. This function will pad the message * according to those rules by filling the Message_Block array * accordingly. It will also call the ProcessMessageBlock function * provided appropriately. When it returns, it can be assumed that * the message digest has been computed. * * Parameters: * context: [in/out] * The context to pad * ProcessMessageBlock: [in] * The appropriate SHA*ProcessMessageBlock function * Returns: * Nothing. * */ static void SHA1PadMessage(SHA1Context *context) { /* * Check to see if the current message block is too small to hold * the initial padding bits and length. If so, we will pad the * block, process it, and then continue padding into a second * block. */ if (context->Message_Block_Index > 55) { context->Message_Block[context->Message_Block_Index++] = 0x80; while(context->Message_Block_Index < 64) { context->Message_Block[context->Message_Block_Index++] = 0; } SHA1ProcessMessageBlock(context); while(context->Message_Block_Index < 56) { context->Message_Block[context->Message_Block_Index++] = 0; } } else { context->Message_Block[context->Message_Block_Index++] = 0x80; while(context->Message_Block_Index < 56) { context->Message_Block[context->Message_Block_Index++] = 0; } } /* * Store the message length as the last 8 octets */ context->Message_Block[56] = context->Length_High >> 24; context->Message_Block[57] = context->Length_High >> 16; context->Message_Block[58] = context->Length_High >> 8; context->Message_Block[59] = context->Length_High; context->Message_Block[60] = context->Length_Low >> 24; context->Message_Block[61] = context->Length_Low >> 16; context->Message_Block[62] = context->Length_Low >> 8; context->Message_Block[63] = context->Length_Low; SHA1ProcessMessageBlock(context); } /* ** Convert a digest into base-16. digest should be declared as ** "unsigned char digest[20]" in the calling function. The SHA1 ** digest is stored in the first 20 bytes. zBuf should ** be "char zBuf[41]". */ static void DigestToBase16(unsigned char *digest, char *zBuf){ static char const zEncode[] = "0123456789abcdef"; int i, j; for(j=i=0; i<20; i++){ int a = digest[i]; zBuf[j++] = zEncode[(a>>4)&0xf]; zBuf[j++] = zEncode[a & 0xf]; } zBuf[j] = 0; } /* ** The state of a incremental SHA1 checksum computation. Only one ** such computation can be underway at a time, of course. */ static SHA1Context incrCtx; static int incrInit = 0; /* ** Add more text to the incremental SHA1 checksum. */ void sha1sum_step_text(const char *zText, int nBytes){ if( !incrInit ){ SHA1Reset(&incrCtx); incrInit = 1; } if( nBytes<=0 ){ if( nBytes==0 ) return; nBytes = strlen(zText); } SHA1Input(&incrCtx, (unsigned char*)zText, nBytes); } /* ** Add the content of a blob to the incremental SHA1 checksum. */ void sha1sum_step_blob(Blob *p){ sha1sum_step_text(blob_buffer(p), blob_size(p)); } /* ** Finish the incremental SHA1 checksum. Store the result in blob pOut ** if pOut!=0. Also return a pointer to the result. ** ** This resets the incremental checksum preparing for the next round ** of computation. The return pointer points to a static buffer that ** is overwritten by subsequent calls to this function. */ char *sha1sum_finish(Blob *pOut){ unsigned char zResult[20]; static char zOut[41]; sha1sum_step_text(0,0); SHA1Result(&incrCtx, zResult); incrInit = 0; DigestToBase16(zResult, zOut); if( pOut ){ blob_zero(pOut); blob_append(pOut, zOut, 40); } return zOut; } /* ** Compute the SHA1 checksum of a file on disk. Store the resulting ** checksum in the blob pCksum. pCksum is assumed to be ininitialized. ** ** Return the number of errors. */ int sha1sum_file(const char *zFilename, Blob *pCksum){ FILE *in; SHA1Context ctx; unsigned char zResult[20]; char zBuf[10240]; in = fopen(zFilename,"rb"); if( in==0 ){ return 1; } SHA1Reset(&ctx); for(;;){ int n; n = fread(zBuf, 1, sizeof(zBuf), in); if( n<=0 ) break; SHA1Input(&ctx, (unsigned char*)zBuf, (unsigned)n); } fclose(in); blob_zero(pCksum); blob_resize(pCksum, 40); SHA1Result(&ctx, zResult); DigestToBase16(zResult, blob_buffer(pCksum)); return 0; } /* ** Compute the SHA1 checksum of a blob in memory. Store the resulting ** checksum in the blob pCksum. pCksum is assumed to be either ** uninitialized or the same blob as pIn. ** ** Return the number of errors. */ int sha1sum_blob(const Blob *pIn, Blob *pCksum){ SHA1Context ctx; unsigned char zResult[20]; SHA1Reset(&ctx); SHA1Input(&ctx, (unsigned char*)blob_buffer(pIn), blob_size(pIn)); if( pIn==pCksum ){ blob_reset(pCksum); }else{ blob_zero(pCksum); } blob_resize(pCksum, 40); SHA1Result(&ctx, zResult); DigestToBase16(zResult, blob_buffer(pCksum)); return 0; } /* ** Compute the SHA1 checksum of a zero-terminated string. The ** result is held in memory obtained from mprintf(). */ char *sha1sum(const char *zIn){ SHA1Context ctx; unsigned char zResult[20]; char zDigest[41]; SHA1Reset(&ctx); SHA1Input(&ctx, (unsigned const char*)zIn, strlen(zIn)); SHA1Result(&ctx, zResult); DigestToBase16(zResult, zDigest); return mprintf("%s", zDigest); } /* ** Convert a cleartext password for a specific user into a SHA1 hash. ** ** The algorithm here is: ** ** SHA1( project-code + "/" + login + "/" + password ) ** ** In words: The users login name and password are appended to the ** project ID code and the SHA1 hash of the result is computed. ** ** The result of this function is the shared secret used by a client ** to authenticate to a server for the sync protocol. It is also the ** value stored in the USER.PW field of the database. By mixing in the ** login name and the project id with the hash, different shared secrets ** are obtained even if two users select the same password, or if a ** single user selects the same password for multiple projects. */ char *sha1_shared_secret(const char *zPw, const char *zLogin){ static char *zProjectId = 0; SHA1Context ctx; unsigned char zResult[20]; char zDigest[41]; SHA1Reset(&ctx); if( zProjectId==0 ){ zProjectId = db_get("project-code", 0); /* On the first xfer request of a clone, the project-code is not yet ** known. Use the cleartext password, since that is all we have. */ if( zProjectId==0 ){ return mprintf("%s", zPw); } } SHA1Input(&ctx, (unsigned char*)zProjectId, strlen(zProjectId)); SHA1Input(&ctx, (unsigned char*)"/", 1); SHA1Input(&ctx, (unsigned char*)zLogin, strlen(zLogin)); SHA1Input(&ctx, (unsigned char*)"/", 1); SHA1Input(&ctx, (unsigned const char*)zPw, strlen(zPw)); SHA1Result(&ctx, zResult); DigestToBase16(zResult, zDigest); return mprintf("%s", zDigest); } /* ** COMMAND: sha1sum ** %fossil sha1sum FILE... ** ** Compute an SHA1 checksum of all files named on the command-line. ** If an file is named "-" then take its content from standard input. */ void sha1sum_test(void){ int i; Blob in; Blob cksum; for(i=2; i